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ABSTRACT: As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type
semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One
method to enhance the performance of 2D material-based photodetectors is by integration with a IV group of semiconductors such
as silicon (Si). In this work, we demonstrate a self-powered, high-speed, broadband photodetector based on the 2D Te/n-type Si
heterojunction. The fabricated Te/n-type Si heterojunction exhibits high performance in the UV−vis−NIR light with a high
responsivity of up to ∼250 mA/W and a photocurrent-to-dark current ratio (Ion/Ioff) of ∼106, fast response time of 8.6 μs, and
superior repeatability and stability. The results show that the fabricated Te/n-type Si heterojunction photodetector has a strong
potential to be utilized in ultrafast, broadband, and efficient photodetection applications.

1. INTRODUCTION
Two-dimensional (2D) materials have emerged as a remark-
able platform for developing a wide range of optoelectronic
devices due to their unique features.1,2 2D materials have
sparked intense interest for the fabrication of semiconductor
devices since monolayer graphene nanosheets were first
reported in 2004.3 In addition, transition metal dichalcoge-
nides (TMDs), such as WS2, MoS2, WSe2, and MoSe2, have
gained a lot of interest as one of the most outstanding classes
of the 2D material family group owing to their tremendous
optical, electrical, and mechanical capabilities, sizeable
bandgap, and high quantum yield for light emission.4−8

However, there are some considerable limitations for
optoelectronic applications such as the limited bandgap of
graphene and relatively low carrier mobility of TMDs.3

2D Te, a group-VI element, has recently gained considerable
interest due to several remarkable properties, such as
remarkably high hole mobility, high optical absorption, high
thermoelectric performance, piezoelectricity, and superior
mechanical and chemical stability compared to the other
high-mobility 2D materials such as phosphorene.9,10 In 2018,

Amani et al. successfully synthesized 2D Te nanosheets.11

Moreover, they found that 2D Te has high carrier mobility
(∼1000 cm2 V−1 s−1) at room temperature (RT). Therefore,
2D Te has high potential for a variety of nanoelectronic
devices such as high-speed field-effect transistors, photo-
detectors, and nanomodulators.
Photodetectors are used in a wide range of applications

including biomedical devices, image processors, automatic
control systems, and communication systems.12 Photodetec-
tors can be classified into two categories: narrowband and
broadband.13 Photodetectors that are sensitive to a broadband
of wavelengths are used in a number of applications including
memory storage, broadband communication, and optoelec-
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tronic systems.13 TMDs have been frequently used in
photodetection applications.14 For instance, Lopez-Sanchez
et al. fabricated a photodetector based on monolayer MoS2,
which shows a photoresponsivity of 880 AW−1 in the
wavelength range of 400−680 nm.15 In addition, Yao et al.

demonstrated a broadband photodetector based on the WS2
film with a photoresponse of 0.5 AW−1.16 Despite the relatively
good performance, TMD-based photodetectors are limited by
low carrier mobility. Moreover, well-studied TMDs such as
MoS2 and WS2 lack photosensitivity at wavelengths beyond

Figure 1. (a) Schematic of the hydrothermal synthesis process for Te nanoflakes. (b) Raman spectrum of the Te crystal, showing the characteristic
peaks for Te (E1g at 92 cm−1, A1g at 121 cm−1, and E2g at 143 cm−1). (c) High-resolution transition electron microscopy (HR-TEM) image and
selected area diffraction (SAED) pattern (inset) of the Te crystal. (d) XRD and (e) XPS spectra of the-as synthesized Te crystal.

Figure 2. (a) 3D Schematic of the Te/n-Si heterojunction device. (b) Optical microscopic image of the as-fabricated device and (inset) AFM
image of the as-synthesized Te nanoflake. (c) I−V measurement of the heterojunction device in a dark environment and room temperature
(logarithmic and linear). (d) I−V curves of the device under light illumination with different power intensities and different wavelengths (from 385
to 1300 nm).
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visible light and therefore have limited application in the near-
infrared (NIR) spectral region. A 2D/3D heterostructure
based on 2D materials and a conventional semiconductor can
overcome the above disadvantages.13,17−19 A higher optical
absorption and better charge separation can be easily achieved
by the integration of 2D materials and a 3D semiconductor,
suggesting an enhanced photodetection efficiency. For
example, Xu et al. fabricated a photodetector based on the
MoS2/GaAs heterojunction, exhibiting a very high photo-
response to vis−NIR.20
Herein, we demonstrated a self-powered, broadband photo-

detector based on the 2D Te/n-Si heterojunction. Te
nanoflakes were synthesized using a modified hydrothermal
process. The fabricated Te/n-type Si (n-Si) heterojunction
exhibited high device performance to broadband (UV−visible-
NIR) incident light at 0 bias voltage. The device showed a high
responsivity of ∼250 mA/W, high photocurrent-to-dark
current ratio (Ion/Ioff) of ∼106, and fast rise time of 8.6 μs at
an incident wavelength of λ = 880 nm at 0 V bias. The 2D Te-
Si heterojunction is therefore a promising candidate for high-
performance and high-speed photodetection applications.

2. RESULTS AND DISCUSSION
2D Te nanoflakes were synthesized by a hydrothermal process
with glucose as a surfactant agent. In this method, TeO2,
NaOH, and glucose were used in the hydrothermal process, as
illustrated in Figure 1a, during which Te nanoflakes formed

gradually in a pressurized autoclave reactor. Note that glucose
was used because it is a safer alternative to hydrazine hydrate, a
reducing agent conventionally used in Te synthesis.21 The
three Raman modes A1g, E1g, and E2g at 121, 92, and 143 cm−1,
respectively, were observed in the Raman spectra of the 2D Te
flakes, as shown in Figure 1b, which are in agreement with
previous reports.10 A high-resolution transmission electron
microscopy (HR-TEM) image of the hydrothermally synthe-
sized Te flakes is shown in Figure 1c. The lattice constant was
measured to be ∼0.34 nm, corresponding to the (101) plane.
The selected area electron diffraction (SAED) pattern of the
Te is shown in the inset of Figure 1c, in which the diffraction
center corresponds to the (101) plane. Due to the anisotropic
crystal structure of Te, Te grew in a (101) direction.22Figure
1d shows the X-ray diffraction (XRD) pattern of the Te crystal,
corresponding to the hexagonal crystal structure of Te
(JCPDS, 36-1452).23 There is a dominant peak located at
27° that is attributed to the (101) plane, suggesting the high
quality of the as-synthesized Te crystal. Figure 1e indicates the
XPS results of the as-synthesized Te crystal. There are two
strong peaks located at 584.8 and 574.4 eV, which are ascribed
to Te 3d5/2 and Te 3d3/2, respectively.

21 In addition, two weak
peaks were observed at 571.1 and 581.5 eV, which are assigned
to Te4+, and it is due to the slight oxidation of Te on the
surface.24

The 2D Te flakes were integrated into a 2D Te-Si
heterojunction device, as illustrated in Figure 2a. The top
sides of the n-type Si substrate and the 2D Te flake were

Figure 3. (a) Real-time photoresponse characteristics under illumination of light at 0 V bias with various wavelengths. (b) Responsivity and EQE of
the as-fabricated Te/n-Si as a function of wavelength and (inset) band diagram of the device. (c) I−V curves and (d) photoresponse versus time of
the heterojunction under different light intensities at a constant wavelength of λ = 880 nm and 0 V bias. (e) Photocurrent as a function of light
intensity of the device at λ = 880 nm. (f) Responsivity and detectivity of the photodetector device versus light intensity at λ = 880 nm.
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electrically contacted using Cr/Au electrodes. The top-side
thermally grown SiO2 film (300 nm in thickness) was used to
electrically isolate the Cr/Au electrode on the 2D Te flake
from the n-type Si substrate. The optical microscopic image of
the top view of the fabricated heterojunction device is shown
in Figure 2b. The thickness of the multilayer Te flake, obtained
by atomic force microscopy (AFM), was measured to be ∼60
nm (inset of Figure 2b). To identify the conduction type of the
as-synthesized Te, a Te field effect transistor (FET) was
fabricated. Figure S1 shows the transfer curve of Te FET,
behaving like a p-type semiconductor. The current−voltage
(I−V) characteristic of the Te/n-Si heterojunction under dark
conditions is shown in Figure 2c. The device exhibited a high
diode rectification behavior, suggesting the formation of a p−n
junction across the interface of Te and n-Si. The rectification
ratio, defined as the current ratio at +1 and −1 V (I+1V/I−1V),
was >105 under dark conditions. The device I−V curve was
measured under incident light illuminated by light-emitting
diodes of different wavelengths (λ = 385, 470, 562, 660, 765,
810, 880, 940, 1070, 1200, and 1300 nm) and dark conditions,
as shown in Figure 2d. The 2D Te/n-Si heterojunction
exhibited an extraordinary photovoltaic effect, and the
photocurrent measured at reverse bias increased by over 5
orders of magnitude between the dark conditions and the
highest intensity of light (λ = 470 nm at 25 mW/cm2) (Figure
2d). The photocurrent was 8.1 × 10−9 at 880 nm (3.8 mW/
cm2) at 0 V, representing an Ion/Ioff ratio of ∼106. The Te/n-Si
heterojunction, therefore, operates as a self-powered (i.e.,
photovoltaic) photodetector.
The dynamic photoresponse of the Te/n-Si heterojunction

to the various wavelengths of light at zero voltage bias is shown
in Figure 3a. Under zero bias (V = 0 V), the current increased
from 5.5 × 10−12 A under a dark condition to 2.4 × 10−7 A at
470 nm (25 mW/cm2), representing a photocurrent-to-dark
current (Ion/Ioff) ratio of ∼105. The photodetector demon-

strated high photosensitivity over a broadband of wavelengths
from 365 to 1300 nm with reproducible and stable
photoresponse. The strong photoresponse at 1300 nm implies
that it can be used for O-band fiber optic in optical
communication applications.25 The following expressions are
used to evaluate a photodetector performance:26

hcR
e

external quantum efficiency (EQE) =
(1)

R I P Sresponsivity ( ) /( )ph= | × | (2)

I I Iphotocurrent ( )ph l d= (3)

D S R
eI

detectivity ( )
(2 )

1/2

d
1/2

* =
(4)

where e, c, and h are the electron charge constant, speed of
light, and Planck’s constant, respectively, and Id and Il are the
dark current and light-on current, respectively. The wave-
length, light intensity, and effective area are λ, P, and S (∼24
μm2), respectively. The spectral photoresponsivity of the
heterojunction was determined under light illumination (λ =
350−1300 nm) at a constant intensity, as shown in Figure 3b.
The Te/n-Si heterojunction photodetector exhibits a broad-
band photoresponse, with maximum sensitivity at approx-
imately 880 nm, which is attributed to the highest absorption
at this wavelength in the Si substrate.13 Additionally, the EQE,
shown on the secondary y axis of Figure 3b as a function of
wavelength, indicates an impressive photon-to-electron con-
version efficiency up to incident light wavelength of 1300 nm.
The energy band diagram of the Te/n-Si heterojunction,
shown in the inset of Figure 3b, represents type-II band
alignment.13Figure 3c shows the I−V characteristic of the Te/
n-Si photodetector under the different incident light intensities
ranging from dark conditions to 4.2 mW/cm2 at a wavelength

Figure 4. (a) Schematic configuration for frequency response measurements. Normalized photoresponse curves of the Te/n-Si heterojunction to
an 880 nm pulsed laser at different frequencies of (b) 1 kHz, (c) 10 kHz, and (d) 50 kHz. (e) Relative response as function of frequency and ( f 3dB).
(f) Rise (τrise = 8.6 μs) and fall (τfall = 11.2 μs) time characteristics of the Te/n-Si heterojunction device.
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of λ = 880 nm. The photocurrent increased from 1.45 × 10−14

A (dark) to 7.61 × 10−9 A (4.2 mW/cm2) at 0 V bias. The
time-response photocurrent of the device under light
illumination at a wavelength of λ = 880 nm measured under
different light intensities at 0 V bias is shown in Figure 3d.
Even at a low light intensity of 0.6 mW/cm2, the Te/n-Si
photodetector exhibited an Ion/Ioff ratio of ∼100. Therefore,
the photodetector is suitable for low-light condition
applications. The photocurrent plotted on a log scale as a
function of light intensity at a wavelength of λ = 880 nm shown
in Figure 3e reveals a linear relationship for light intensities
between 0.6 and 4.2 mW/cm2. The detectivity (D*) and
responsivity (R) versus light intensity at a wavelength of λ =
880 nm are shown in Figure 3f. D* and R increased as light
intensity decreased, which is attributed to higher carrier
recombination under higher light intensity.13

The transient response behavior of the Te/n-Si photo-
detector was examined by frequency response analysis. The
photocurrent of the device in response to an 880 nm pulsed
light-emitting diode at various frequencies was measured using
an oscilloscope (Figure 4a). The normalized photoresponses
under pulsed light at 1, 10, and 50 kHz are shown in Figure
4b−d, respectively. The Te/n-Si heterojunction exhibited a
high 3 dB frequency ( f 3dB) of ∼12 kHz and a wide range of
frequency response over 95 kHz (see Figure 4e). The rise time
and fall time, defined as the time to transition from 10 to 90%
of the photocurrent signal and vice versa, were measured to be
8.6 and 11.2 μs, respectively (Figure 4f), suggesting that the
Te/n-Si photodetector is a promising candidate for high-speed
optical communication applications. The high speed of this

photodetector is ascribed to the high carrier mobility of Te
compared to other 2D material-based heterojunction photo-
detectors reported previously.10,27

Polarization sensitivity in photodetectors can increase the
signal-to-noise ratio and has a variety of applications such as
biomedical imaging and optical communication devices.19,28

The Te/n-Si photodetector exhibited a remarkable response to
polarized light due to the intrinsic anisotropic nature of Te.
The photodetector was illuminated by polarized light with a
wavelength of λ = 880 nm, as illustrated in Figure 5a. The
normalized photocurrent as a function of the polarization angle
of light is shown in Figure 5b, revealing that photodetector
response is highly dependent on the incident polarization
angle. The peak values of the photocurrent were measured at 0
and 180° polarization angles, and the minimum photocurrent
values were measured at 90 and 270°, indicating a sine
function with a peak-to-valley ratio of ∼3. The extraordinary
polarization sensitivity of the Te/n-Si heterojunction photo-
detector is due to the greatly anisotropic crystal structure of Te
nanoflakes.29Figure 5c shows the cyclability and stability test of
the Te/n-Si photodetector, showing a continuous response of
about 7000 cycles without notable degradation in signal
amplitude. The devices also have good environmental stability.
A three-month exposure to the air without any encapsulation
seemed not to affect the device’s electrical performance
(Figure S2).
The optimized Te nanosheet thickness for photon

absorption was investigated using the multiple reflection
interference methods, which have been developed based on
Fresnel’s law and adopted to many 2D materials’ inter-

Figure 5. (a) 3D Schematic illustration of the polarization sensitivity measurement. (b) Angle-dependent normalized photocurrent of the Te/n-Si
heterojunction. (c) Stability test of the as-fabricated Te/n-Si heterojunction up to about 7000 photoresponse cycles. (d) Absorption as a function
of Te thickness under red, green, and IR light illumination.
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faces.11,30,31 This was employed to determine the thickness of
ultrathin flakes from optical microscopic images as well as to
investigate the intensity evolution of both the Raman and PL
signals of 2D materials.32−35 We investigated the light
absorption of Te nanosheets deposited on Si substrates as a
function of their thickness. The absorption was calculated by
considering multiple reflection interference at the interfaces
(air-Te-Si) and in the interlayers and the complex refractive
indices of each medium in the multilayer configuration. As
shown in Figure 5d, photon absorption simulations under
green (500 nm), red (700 nm), and infrared (900 nm)
illumination suggest that 40−60 nm is the optimal thickness
for high-performance photodetectors as stronger absorption
leads to enhanced photocurrent generation. Table 1 summa-
rizes the important photodetection parameters of various
photodetectors based on 2D materials/Si heterojunctions. As a
result, the Te/Si heterojunction is considered advantageous to
the self-powered, broadband, and high-speed photodetector.

3. CONCLUSIONS
In summary, 2D Te was synthesized by the hydrothermal
process and integrated into a Te/n-Si heterojunction photo-
detector. The photodetector exhibited a high Ion/Ioff ratio of
∼106, EQE of 91%, responsivity of 248 mA/W, detectivity of
1.8 × 1012 Jones, fast rise and fall response times of 8.6 and
11.2 μs, respectively, at 0 V, and a broadband response up to a
wavelength of λ = 1300 nm. The high-performance Te/n-Si
photodetector is attributed to high electron mobility of 2D Te
and type-II band alignment of the Te and Si interface. In
addition, the device showed polarization sensitivity and a
superior stability toward about 7000 cycles without any
notable degradation in signal amplitude. Therefore, the Te/
n-Si heterojunction photodetector is a promising candidate in
high-speed, broadband, and efficient photodetection applica-
tions.

4. EXPERIMENTAL SECTION
4.1. Synthesis of Te Nanoflakes. NaOH (0.4 g), 0.2 g of

glucose, and 0.4 g of TeO2 were dissolved in 80 mL of DI
water at RT. A homogeneous solution was obtained via 20 min
of sonication of the above solution. Then, the solution was
transferred to a 100 mL Teflon-lined autoclave and heated at
180 °C for 1 h. Finally, the as-synthesized hexagonal Te
nanoflakes were collected and washed three times with ethanol
and IPA to remove any chemical residues.
4.2. Fabrication of Te/n-Si Heterojunction. As a

substrate, an n-Si wafer with a thermally grown SiO2 layer
(300 nm) was used. SiO2/Si substrates were ultrasonically

cleaned by using a three-step cleaning process by acetone, IPA,
and DI water. The substrates were then treated by Ar plasma
to make them superhydrophilic. Afterward, Te precursor
solution was drop-casted on SiO2/Si substrates and baked at
100 °C. To fabricate the Te/n-Si heterojunction device, a
Microposit S1813 photoresist was applied and then the
photolithography process, thermal evaporation, and lift-off in
an acetone bath were done to pattern electrodes with
thicknesses of 10 nm Cr and 60 nm Au on the SiO2/Si
substrate. Subsequently, another photoresist layer was applied
on the Cr/Au/SiO2/Si substrate, and a window was opened to
the Te crystal. To etch the SiO2 layer and create a sloped
sidewall, the sample was immersed in 3% diluted hydrofluoric
acid (HF) for 30 min.
4.3. Characterization. The thickness of the Te nanoflake

was evaluated by atomic force microscopy (MFP-3D, Asylum).
Raman microscopy (Renishaw, 514 nm excitation laser) was
used to verify the Te crystals. Transmission electron
microscopy (TEM, JEOL-2100F, Japan) was employed to
show the crystal structure and lattice constant. PANalytical
Empyrean was used for XRD measurements using a Cu (Kα,
1.5406 Å) source. XPS examination was carried out utilizing a
monochromatic aluminum source (Al K, 1486.6 eV) running
at 150 W in a Kratos Analytical Axis ULTRA spectrometer
with a DLD spectrometer.
4.4. Device Measurement. A probe station connected to

a Keithley (SCS-4200) semiconductor measurement system,
an oscilloscope (Tektronix, MDO3104, USA), a spectrometer
(Thorlabs, PM100D, USA), a waveform generator, and light
sources was used to perform the electrical/optical measure-
ments.
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